Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The prokaryotic and eukaryotic homologues of complex I (proton-pumping NADH:quinone oxidoreductase) perform the same function in energy transduction, but the eukaryotic enzymes are twice as big as their prokaryotic cousins, and comprise three times as many subunits. Fourteen core subunits are conserved in all complexes I, and are sufficient for catalysis - so why are the eukaryotic enzymes embellished by so many supernumerary or accessory subunits? In this issue of the Biochemical Journal, Angerer et al. have provided new evidence to suggest that the supernumerary subunits are important for enzyme stability. This commentary aims to put this suggestion into context.

Original publication

DOI

10.1042/BJ20110918

Type

Journal article

Journal

Biochem J

Publication Date

15/07/2011

Volume

437

Pages

e1 - e3

Keywords

Animals, Cattle, Electron Transport Complex I, Enzyme Stability, Eukaryotic Cells, Mitochondria, Heart, Prokaryotic Cells, Protein Subunits