Off-pathway, oxygen-dependent thiamine radical in the Krebs cycle.
Frank RAW., Kay CWM., Hirst J., Luisi BF.
The catalytic cofactor thiamine diphosphate is found in many enzymes of central metabolism and is essential in all extant forms of life. We demonstrate the presence of an oxygen-dependent free radical in the thiamine diphosphate-dependent Escherichia coli 2-oxoglutarate dehydrogenase, which is a key component of the tricarboxylic acid (Krebs) cycle. The radical was sufficiently long-lived to be trapped by freezing in liquid nitrogen, and its electronic structure was investigated by electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR). Taken together, the spectroscopic results revealed a delocalized pi radical on the enamine-thiazolium intermediate within the enzyme active site. The radical is generated as an intermediate during substrate turnover by a side reaction with molecular oxygen, resulting in the continuous production of reactive oxygen species under aerobic conditions. This off-pathway reaction may account for metabolic dysfunction associated with several neurodegenerative diseases. The possibility that the on-pathway reaction may proceed via a radical mechanism is discussed.