Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Mitochondria are the powerhouses of cells and produce cellular energy in the form of ATP. Mitochondrial dysfunction contributes to biological aging and a wide variety of disorders including metabolic diseases, premature aging syndromes, and neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). Maintenance of mitochondrial health depends on mitochondrial biogenesis and the efficient clearance of dysfunctional mitochondria through mitophagy. Experimental methods to accurately detect autophagy/mitophagy, especially in animal models, have been challenging to develop. Recent progress towards the understanding of the molecular mechanisms of mitophagy has enabled the development of novel mitophagy detection techniques. Here, we introduce several versatile techniques to monitor mitophagy in human cells, Caenorhabditis elegans (e.g., Rosella and DCT-1/ LGG-1 strains), and mice (mt-Keima). A combination of these mitophagy detection techniques, including cross-species evaluation, will improve the accuracy of mitophagy measurements and lead to a better understanding of the role of mitophagy in health and disease.

Original publication




Journal article


Journal of visualized experiments : JoVE

Publication Date



Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health; Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital;;


Mitochondria, Animals, Humans, Mice, Caenorhabditis elegans, Caenorhabditis elegans Proteins, Female, Male, Mitochondrial Degradation