Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

© 2017 The Natural Computing Applications Forum System identification and data-driven modeling techniques have seen ubiquitous applications in the past decades. In particular, parametric modeling methodologies such as linear and nonlinear autoregressive with exogenous input models (ARX and NARX) and other similar and related model types have been preferably applied to handle diverse data-driven modeling problems due to their easy-to-compute linear-in-the-parameter structure, which allows the resultant models to be easily interpreted. In recent years, several variations of the NARX methodology have been proposed that improve the performance of the original algorithm. Nevertheless, in most cases, NARX models are applied to regression problems where all output variables involve continuous or discrete-time sequences sampled from a continuous process, and little attention has been paid to classification problems where the output signal is a binary sequence. Therefore, we developed a novel classification algorithm that combines the NARX methodology with logistic regression and the proposed method is referred to as logistic-NARX model. Such a combination is advantageous since the NARX methodology helps to deal with the multicollinearity problem while the logistic regression produces a model that predicts categorical outcomes. Furthermore, the NARX approach allows for the inclusion of lagged terms and interactions between them in a straight forward manner resulting in interpretable models where users can identify which input variables play an important role individually and/or interactively in the classification process, something that is not achievable using other classification techniques like random forests, support vector machines, and k-nearest neighbors. The efficiency of the proposed method is tested with five case studies.

Original publication

DOI

10.1007/s00521-017-2976-x

Type

Journal article

Journal

Neural computing and applications

Publication Date

27/04/2017

Pages

1 - 15