Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

© Springer International Publishing AG 2017. 3D ultrasound (US) is a promising technique to perform automatic extraction of standard planes for fetal anatomy assessment. This requires prior organ localization, which is difficult to obtain with direct learning approaches because of the high variability in fetus size and orientation in US volumes. In this paper, we propose a methodology to overcome this spatial variability issue by scaling and automatically aligning volumes in a common 3D reference coordinate system. This preprocessing allows the organ detection algorithm to learn features that only encodes the anatomical variability while discarding the fetus pose. All steps of the approach are evaluated on 126 manually annotated volumes, with an overall mean localization error of 11.9 mm, showing the feasibility of multi-organ detection in 3D fetal US with machine learning.

Original publication




Conference paper

Publication Date



10554 LNCS


62 - 72