Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Graph processing has become an integral part of big data analytics. With the ever increasing size of the graphs, one needs to partition them into smaller clusters, which can be managed and processed more easily on multiple machines in a distributed fashion. While there exist numerous solutions for edge-cut partitioning of graphs, very little effort has been made for vertex-cut partitioning. This is in spite of the fact that vertex-cuts are proved significantly more effective than edge-cuts for processing most real world graphs. In this paper we present Ja-be-Ja-vc, a parallel and distributed algorithm for vertex-cut partitioning of large graphs. In a nutshell, Ja-be-Ja-vc is a local search algorithm that iteratively improves upon an initial random assignment of edges to partitions. We propose several heuristics for this optimization and study their impact on the final partitioning. Moreover, we employ simulated annealing technique to escape local optima. We evaluate our solution on various graphs and with variety of settings, and compare it against two state-of-the-art solutions. We show that Ja-be-Ja-vc outperforms the existing solutions in that it not only creates partitions of any requested size, but also requires a vertex-cut that is better than its counterparts and more than 70% better than random partitioning. © 2014 IFIP Internatinal Federation for Information Processing.

Original publication

DOI

10.1007/978-3-662-43352-2_15

Type

Conference paper

Publication Date

01/01/2014

Volume

8460 LNCS

Pages

186 - 200