Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Twin data can be used to gain insights into the origin of associations between factors arising in fetal life and the risk of later disease. This is because twin data afford an opportunity to conduct paired analyses that take the influence of shared factors into account. When an association that is present in an unpaired analysis is present also in a paired analysis, there is evidence that the causal pathway linking the fetal factor and the disease may have a fetal origin. If the association disappears in the paired analysis, there is evidence that it may have has arisen from a shared source such as the mother. The relevant factors include diet and socio-economic status. There are several statistical approaches to this. The simplest involves comparing, say, a coefficient from a regression of an outcome on a fetal factor for all subjects in a twin sample, with the coefficient obtained from regressing the within-pair difference in the outcome on the within-pair difference in the fetal factor. Alternative approaches involve simultaneously estimating regression parameters for between- and within-pair components. These approaches permit similar inferences about whether the association is due to individual (fetal) or shared (maternal) factors, and are valid in the circumstances that non-shared factors missing from the regression model do not influence the regression estimates.

Original publication




Journal article


Paediatr Perinat Epidemiol

Publication Date



19 Suppl 1


48 - 53


Birth Weight, Blood Pressure, Chronic Disease, Epidemiologic Research Design, Fetal Development, Humans, Models, Statistical, Regression Analysis, Risk Factors, Twin Studies as Topic, Twins