Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

All freehand 3-D ultrasound systems have some latency between the acquisition of an image and its associated position. Previously, estimation of latency has been made by tracking a phantom in a sequence of images and correlating its motion to that recorded by the position sensor. However, tracking-based temporal calibration uses the assumption that latency is constant between scans. This paper presents a new method for temporal calibration that avoids this assumption. Temporal calibration is performed on the scan data by finding the latency at which the best alignment of the 2-D images within the reconstructed volume occurs. The mean voxel intensity variance is used as a global measure of the quality of alignment within the volume and is minimized with respect to latency for each scan. The new method is compared with previous methods using an ultrasound phantom. Finally, integration of temporal calibration with existing spatial calibration methods is discussed.

Original publication




Journal article


Ultrasound med biol

Publication Date





919 - 927


Calibration, Electronics, Medical, Humans, Image Processing, Computer-Assisted, Imaging, Three-Dimensional, Phantoms, Imaging, Ultrasonography