Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

© Springer International Publishing Switzerland 2015. In this paper, we propose a novel machine learning based method to categorize unlabeled fetal ultrasound images. The proposed method guides the learning of a Random Forests classifier to extract features from regions inside the images where meaningful structures exist. The new method utilizes a translation and orientation invariant feature which captures the appearance of a region at multiple spatial resolutions. Evaluated on a large real world clinical dataset (~30K images from a hospital database), our method showed very promising categorization accuracy (accuracytop1 is 75% while accuracytop2 is 91%).

Original publication




Conference paper

Publication Date





687 - 694