Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The aims of the present study were to; (1) determine the effects of supplementation with two antioxidants during in vitro culture (IVC) on embryo development and quality; and (2) test the effects of adding the antioxidants to vitrification–warming media on the cryotolerance of in vitro-produced (IVP) porcine blastocysts. In Experiment 1, presumptive zygotes were cultured without antioxidants, with 50 µM β-mercaptoethanol (β-ME) or with 100 µM l-ascorbic acid (AC). After culture, blastocyst yield, quality and cryotolerance were evaluated in each treatment group. In Experiment 2, survival rates (3 and 24 h), total cell number, apoptosis index and the formation of reactive oxygen species (ROS) in blastocysts vitrified–warmed with 100 µM AC or 50 µM β-ME or without antioxidants added to the vitrification medium were compared. Antioxidant addition during IVC had no effect on embryo development, total cell number or the apoptosis index, and culturing embryos in the presence of β-ME had no effects on cryotolerance. In contrast, ROS levels and survival rates after vitrification–warming were significantly improved in embryos cultured with AC. Furthermore, addition of AC into vitrification–warming media enhanced embryo survival and embryo quality after warming. In conclusion, our results suggest that supplementing culture or vitrification media with 100 µM AC improves the quality and cryosurvival of IVP porcine blastocysts.

Original publication

DOI

10.1071/rd13116

Type

Journal article

Journal

Reproduction, Fertility and Development

Publisher

CSIRO Publishing

Publication Date

2014

Volume

26

Pages

875 - 875