Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

We present a fully automatic method to segment the skull from 2-D ultrasound images of the fetal head and to compute the standard biometric measurements derived from the segmented images. The method is based on the minimization of a novel cost function. The cost function is formulated assuming that the fetal skull has an approximately elliptical shape in the image and that pixel values within the skull are on average higher than in surrounding tissues. The main idea is to construct a template image of the fetal skull parametrized by the ellipse parameters and the calvarial thickness. The cost function evaluates the match between the template image and the observed ultrasound image. The optimum solution that minimizes the cost is found by using a global multiscale, multistart Nelder-Mead algorithm. The method was qualitatively and quantitatively evaluated using 90 ultrasound images from a recent segmentation grand challenge. These images have been manually analyzed by three independent experts. The segmentation accuracy of the automatic method was similar to the inter-expert segmentation variability. The automatically derived biometric measurements were as accurate as the manual measurements. Moreover, the segmentation accuracy of the presented method was superior to the accuracy of the other automatic methods that have previously been evaluated using the same data.

Original publication




Journal article


Comput Med Imaging Graph

Publication Date





774 - 784


Biparietal diameter, Energy minimization, Fetal biometry, Global optimization, Head circumference, Image analysis, Biometry, Data Interpretation, Statistical, Humans, Image Enhancement, Image Interpretation, Computer-Assisted, Normal Distribution, Pattern Recognition, Automated, Reproducibility of Results, Sensitivity and Specificity, Skull, Ultrasonography, Prenatal