Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Ultrasound (US) image segmentation can be a challenging task due to signal dropouts, missing boundaries, and presence of speckle. Typically, purely intensity-based methods do not lead to a good segmentation of the structures of interest. Prior work has shown that local phase and feature asymmetry, derived from the monogenic signal, extract structural information from US images. This paper proposes a novel US segmentation approach based on the fuzzy connectedness framework. The approach uses local phase and feature asymmetry to define the so-called affinity function, which drives the segmentation algorithm, incorporates a shape-based object completion step, and regularises the result by mean curvature flow. Identifying new image-based biomarkers of fetal nutrition across gestation is essential to characterise the well-being of a fetus at an early stage. Results are presented on US images of the fetal arm taken at multiple gestational ages, the adipose tissue being an indicator of the fetal nutritional state. © 2012 IEEE.

Original publication




Journal article


Proceedings - International Symposium on Biomedical Imaging

Publication Date



1323 - 1326