Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Respiratory sounds are always contaminated by heart sound interference. An essential preprocessing step in some of the heart sound cancellation methods is localizing primary heart sound components. Singular spectrum analysis (SSA), a powerful time series analysis technique, is used in this paper. Despite the frequency overlap of the heart and lung sound components, two different trends in the eigenvalue spectra are recognizable, which leads to find a subspace that contains more information about the underlying heart sound. Artificially mixed and real respiratory signals are used for evaluating the performance of the method. Selecting the appropriate length for the SSA window results in good decomposition quality and low computational cost for the algorithm. The results of the proposed method are compared with those of well-established methods, which use the wavelet transform and entropy of the signal to detect the heart sound components. The proposed method outperforms the wavelet-based method in terms of false detection and also correlation with the underlying heart sounds. Performance of the proposed method is slightly better than that of the entropy-based method. Moreover, the execution time of the former is significantly lower than that of the latter. © 2011 IEEE.

Original publication




Journal article


IEEE Transactions on Biomedical Engineering

Publication Date





3360 - 3367