Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

In this paper a new approach to accurately classify ECG arrhythmias through a combination of the wavelet transform and artificial neural network is presented. Three kinds of features in a very computationally efficient manner are computed as follows: 1-Joint time-frequency features (discrete wavelet transform coefficients). 2-Time domain features (R-R intervals). 3-Statistical feature (form factor). Using these features, the limitations of other methods in classifying multiple kinds of arrhythmia with high accuracy for all of them at once are overcome. Finally, a cascade classifier including two ANNs has been designed. Considering the whole MIT-BIH arrhythmia database, 10 kinds of arrhythmia were classified. The overall accuracy of classification of the proposed approach is above 90%.

Original publication




Conference paper

Publication Date