Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Abstract Physiological changes during pregnancy support foetal growth, including adaptations in pancreatic islets to maintain glucose homeostasis. We investigate these adaptations using rare, high-quality pancreatic tissue from pregnant human donors and matched controls. We profile islets from pregnant donors using proteomics and assess α- and β-cell characteristics, as well as prolactin receptor and serotonin 2B receptor expression. Proteomic profiling of microdissected human islets identifies 7546 proteins but shows minimal differences in protein expression. In pregnancy, we show that islet area increases 1.9-fold, α- and β-cell areas increase 4.3- and 1.9-fold, driven by an increase in cell number rather than hypertrophy. Prolactin receptor expression is higher in α but not β cells, and serotonin 2B receptor is undetectable in β cells. Glucagon-like peptide-1 abundance increases 2.9-fold in α cells. These findings indicate that the molecular mechanisms driving pregnancy-induced islet adaptations in humans differ from those in mice, highlighting the need for human-based studies.

Original publication

DOI

10.1038/s41467-025-61852-5

Type

Journal article

Journal

Nature Communications

Publisher

Springer Science and Business Media LLC

Publication Date

21/07/2025

Volume

16