Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Retinoblastoma (RB) is an important ocular malignancy of childhood. It has been commonly accepted for some time that knockout of the two alleles of the RB1 gene is the principal molecular target associated with the occurrence of RB. In this article, we examine the validity of the two-hit theory for RB by comparing the fit of a stochastic model with two or more mutational stages. Unlike many such models, our model assumes a fully stochastic stem cell compartment, which is crucial to its behavior. Models are fitted to a population-based dataset comprising 1,553 cases of RB for the period 1962-2000 in Great Britain (England, Scotland and Wales). The population incidence of RB is best described by a fully stochastic model with two stages, although models with a deterministic stem cell compartment yield equivalent fit; models with three or more stages fit much less well. The results strongly suggest that knockout of the two alleles of the RB1 gene is necessary and may be largely sufficient for the development of RB, in support of Knudson's two-hit hypothesis. Copyright © 2011 UICC.

Original publication




Journal article


International Journal of Cancer

Publication Date





631 - 640