Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Antepartum Cardiotocography (CTG) is a biomedical sensing technology widely used for fetal health monitoring. While the visual interpretation of CTG traces is highly subjective, with the inter-observer agreement as low as 29% and a false positive rate of approximately 60%, the Dawes–Redman system provides an automated approach to fetal well-being assessments. However, it is primarily designed to rule out adverse outcomes rather than detect them, resulting in a high specificity (90.7%) but low sensitivity (18.2%) in identifying fetal distress. This paper introduces PatchCTG, an AI-enabled biomedical time series transformer for CTG analysis. It employs patch-based tokenisation, instance normalisation, and channel-independent processing to capture essential local and global temporal dependencies within CTG signals. PatchCTG was evaluated on the Oxford Maternity (OXMAT) dataset, which comprises over 20,000 high-quality CTG traces from diverse clinical outcomes, after applying the inclusion and exclusion criteria. With extensive hyperparameter optimisation, PatchCTG achieved an AUC of 0.77, with a specificity of 88% and sensitivity of 57% at Youden’s index threshold, demonstrating its adaptability to various clinical needs. Its robust performance across varying temporal thresholds highlights its potential for both real-time and retrospective analysis in sensor-driven fetal monitoring. Testing across varying temporal thresholds showcased it robust predictive performance, particularly with finetuning on data closer to delivery, achieving a sensitivity of 52% and specificity of 88% for near-delivery cases. These findings suggest the potential of PatchCTG to enhance clinical decision-making in antepartum care by providing a sensor-based, AI-driven, objective tool for reliable fetal health assessment.

Original publication

DOI

10.3390/s25092650

Type

Journal article

Journal

Sensors

Publisher

MDPI AG

Publication Date

22/04/2025

Volume

25

Pages

2650 - 2650