Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Syncytiotrophoblast-derived extracellular vesicles (STB-EVs) have an important role in placental research: both as mediators of feto-maternal signalling and as liquid biopsies reflecting placental health. Recent evidence highlights the importance of STB-EV RNA. Isolation of STB-EV RNA from maternal blood is therefore an important challenge. We describe a novel technique where we first separate medium-large particles from plasma using centrifugation then use a highly specific bead-bound antibody to placental alkaline phosphatase to separate STB-EVs from other similar-sized particles. We demonstrate the yield and size profile of small RNA obtained from plasma STB-EVs. We present data confirming isolation of placenta-derived micro RNA from maternal plasma using this method. The technique has been successfully applied to validate novel RNA discoveries from placental perfusion models. We propose it could offer new insights through transcriptomic analyses, providing a syncytiotrophoblast-specific signal from maternal blood.

Original publication




Journal article



Publication Date