Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Advances in analytical instrumentation can provide significant advantages to the volume and quality of biological knowledge acquired in metabolomic investigations. The interfacing of sub-2 microm liquid chromatography (UPLC ACQUITY) and LTQ-Orbitrap mass spectrometry systems provides many theoretical advantages. The applicability of the interfaced systems was investigated using a simple 11-component metabolite mix and a complex mammalian biofluid, serum. Metabolites were detected in the metabolite mix with signals that were linear with their concentration over 2.5-3.5 orders of magnitude, with correlation coefficients greater than 0.993 and limits of detection less than 1 micromol L(-1). Reproducibility of retention time (RSD<3%) and chromatographic peak area (RSD<15%) and a high mass accuracy (<2 ppm) were observed for 14 QC serum samples interdispersed with other serum samples, analysed over a period of 40 h. The evaluation of a single deconvolution software package (XCMS) was performed and showed that two parameters (snthresh and bw) provided significant changes to the number of peaks detected and the peak area reproducibility for the dataset used. The data were used to indicate possible biomarkers of pre-eclampsia and showed both the instruments and XCMS to be applicable to the reproducible and valid detection of disease biomarkers present in serum.

Original publication




Journal article


J Chromatogr B Analyt Technol Biomed Life Sci

Publication Date





288 - 298


Blood Chemical Analysis, Chromatography, High Pressure Liquid, Computational Biology, Female, Humans, Mass Spectrometry, Metabolism, Pre-Eclampsia, Pregnancy, Reproducibility of Results