Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Upon embryo implantation, the uterine mucosa - the endometrium - transforms into a robust decidual matrix that accommodates the fetal placenta throughout pregnancy. This transition is driven by the differentiation of endometrial fibroblasts into specialised decidual cells. A synchronised influx of circulating natural killer (NK) cells and bone marrow-derived mesenchymal stem/progenitor cells (BM-MSC) is pivotal for decidual homeostasis and expansion in early pregnancy. We hypothesise that pathological signals interfering with the recruitment or activity of extrauterine cells at the maternal-fetal interface link miscarriage to subsequent adverse pregnancy outcomes, including further pregnancy losses and preterm labour. NK cells and BM-MSC are key homeostatic regulators in multiple tissues, pointing towards a shared aetiology between recurrent miscarriage and age-related disorders, including cardiometabolic disease. We propose the term 'miscarriage syndrome' to capture the health risks associated with miscarriage and discuss how this paradigm can inform clinical practice and accelerate the development of preventative strategies.

Original publication




Journal article



Publication Date





Ageing, Cardiovascular disease, Miscarriage, Pregnancy, Preterm birth, Syndrome, Abortion, Habitual, Embryo Implantation, Endometrium, Female, Humans, Infant, Newborn, Pregnancy, Pregnancy Outcome, Uterus