Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Research question: Does rescue in-vitro maturation (IVM) in the presence or absence of cumulus cells, affect the progress of meiosis I, compared with oocytes that mature in vivo? Design: This prospective study was conducted in a university-affiliated fertility centre. Ninety-five young oocyte donors (mean age 25.57 ± 4.47) with a normal karyotype and no known fertility problems were included. A total of 390 oocytes (116 mature metaphase II [MII] and 274 immature oocytes) were analysed. The immature oocytes underwent rescue IVM in the presence of cumulus cells (CC; IVM+CC; n = 137) or without them (IVM-CC; n = 137), and IVM rate was calculated. Chromosome copy number analysis using next-generation sequencing (NGS) was performed on all rescue IVM oocytes reaching MII as well as those that were mature at the time of initial denudation (in-vivo-matured oocytes [IVO]). Results: Maturation rates were similar in IVM+CC and IVM-CC oocytes (62.8 versus 71.5%, P = 0.16). Conclusive cytogenetic results were obtained from 65 MII oocytes from the IVM+CC group, 87 from the IVM-CC group, and 99 from the IVO group. Oocyte euploidy rates for the three groups were similar, at 75.4%, 83.9% and 80.8%, respectively (P = 0.42). Conclusions: The results suggest that culture of germinal vesicle and metaphase I oocytes in the presence of cumulus cells does not improve rates of IVM. In general, the process of rescue IVM does not appear to alter the frequency of oocytes with a normal chromosome copy number.

Original publication

DOI

10.1016/j.rbmo.2023.103379

Type

Journal article

Journal

Reproductive BioMedicine Online

Publication Date

01/01/2023