Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Candida albicans cells depend on the energy derived from amino acid catabolism to induce and sustain hyphal growth inside phagosomes of engulfing macrophages. The concomitant deamination of amino acids is thought to neutralize the acidic microenvironment of phagosomes, a presumed requisite for survival and initiation of hyphal growth. Here, in contrast to an existing model, we show that mitochondrial-localized NAD+-dependent glutamate dehydrogenase (GDH2) catalyzing the deamination of glutamate to α-ketoglutarate, and not the cytosolic urea amidolyase (DUR1,2), accounts for the observed alkalization of media when amino acids are the sole sources of carbon and nitrogen. C. albicans strains lacking GDH2 (gdh2-/-) are viable and do not extrude ammonia on amino acid-based media. Environmental alkalization does not occur under conditions of high glucose (2%), a finding attributable to glucose-repression of GDH2 expression and mitochondrial function. Consistently, inhibition of oxidative phosphorylation or mitochondrial translation by antimycin A or chloramphenicol, respectively, prevents alkalization. GDH2 expression and mitochondrial function are derepressed as glucose levels are lowered from 2% (~110 mM) to 0.2% (~11 mM), or when glycerol is used as primary carbon source. Using time-lapse microscopy, we document that gdh2-/- cells survive, filament and escape from primary murine macrophages at rates indistinguishable from wildtype. In intact hosts, such as in fly and murine models of systemic candidiasis, gdh2-/- mutants are as virulent as wildtype. Thus, although Gdh2 has a critical role in central nitrogen metabolism, Gdh2-catalyzed deamination of glutamate is surprisingly dispensable for escape from macrophages and virulence. Consistently, using the pH-sensitive dye (pHrodo), we observed no significant difference between wildtype and gdh2-/- mutants in phagosomal pH modulation. Following engulfment of fungal cells, the phagosomal compartment is rapidly acidified and hyphal growth initiates and sustained under consistently acidic conditions within phagosomes. Together, our results demonstrate that amino acid-dependent alkalization is not essential for hyphal growth, survival in macrophages and hosts. An accurate understanding of the microenvironment within macrophage phagosomes and the metabolic events underlying the survival of phagocytized C. albicans cells and their escape are critical to understanding the host-pathogen interactions that ultimately determine the pathogenic outcome.

Original publication

DOI

10.1371/journal.ppat.1008328

Type

Journal article

Journal

PLoS pathogens

Publication Date

09/2020

Volume

16

Addresses

Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden.

Keywords

Phagosomes, Macrophages, Animals, Mice, Inbred C57BL, Mice, Drosophila melanogaster, Candida albicans, Candidiasis, Nitrogen, Glutamate Dehydrogenase, Amino Acids, Fungal Proteins, Virulence, Hydrogen-Ion Concentration, Female, Host-Pathogen Interactions