Compressed Sensing with Gaussian Sampling Kernel for Ultrasound Imaging
Anand R., Thittai AK.
Recently, compressed sensing (CS) has been applied to ultrasound imaging for either data reduction or frame rate improvement. However, there are no detailed reports yet on strategies for lateral undersampling of channel data in conventional focused beamforming (CFB) and its recovery exploiting the CS approach. We propose a strategic lateral undersampling approach for channel data using the Gaussian sampling scheme and compare it with a direct extension of the often-used uniform undersampling reported for axial undersampling to the lateral direction and 2-D random sampling reported in the literature. As opposed to the reported 2-D random undersampling, we explore undersampling of channel data in the lateral direction by acquiring radiofrequency data from only a reduced number of chosen receive elements and subjecting these data to further undersampling in the axial direction. The effect of the sampling schemes on CS recovery was studied using data from simulations and experiments for various lateral and axial undersampling rates. The results suggest that CS-recovered data from the Gaussian distribution-based channel data subsampling yielded better recovery and contrast in comparison to those obtained from the often-used uniform distribution-based undersampling. Although 90% of the samples from the original data using the proposed sampling scheme were discarded, the contrast of the CS-recovered image was comparable to that of the reference image. Thus, CS with the proposed Gaussian sampling scheme for channel data subsampling not only reduces the data size significantly, but also strategically uses only a few active receive elements in the process; thus, it can provide an attractive option for the affordable point-of-care ultrasound system.