Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Radio waves are highly penetrating, non-ionizing, and cause minimal damage to surrounding tissues. Radio wave control of drug release has been achieved using a novel thermoresponsive copolymer bound to a superparamagnetic iron oxide nanoparticle (SPION) core. A NIPAM-acrylamide-methacrolein copolymer underwent a coil-to-globular structure phase change upon reaching a critical temperature above the human body temperature but below hyperthermic temperatures. The copolymer was covalently bound to SPIONs which increase in temperature upon exposure to radio waves. This effect could be controlled by varying input energies and frequencies. For controlled drug release, proteins were bound via aldehyde groups on the copolymer and amine groups on the protein. The radio wave-induced heating of the complex thereby released the drug-bearing proteins. The fine-tuning of the radio wave exposure allowed multiple cycles of protein-drug release. The fluorescent tagging of the complex by FITC was also achieved in situ, allowing the tagging of the complex. The localization of the complex could also be achieved in vitro under a permanent magnetic field.

Original publication




Journal article


Materials (Basel)

Publication Date





activation, cancer, chemotherapy, nanoparticles, radio waves, responsive, smart