Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The proliferation of street view images (SVIs) and the constant advancements in deep learning techniques have enabled urban analysts to extract and evaluate urban perceptions from large-scale urban streetscapes. However, many existing analytical frameworks have been found to lack interpretability due to their end-to-end structure and "black-box" nature, thereby limiting their value as a planning support tool. In this context, we propose a five-step machine learning framework for extracting neighborhood-level urban perceptions from panoramic SVIs, specifically emphasizing feature and result interpretability. By utilizing the MIT Place Pulse data, the developed framework can systematically extract six dimensions of urban perceptions from the given panoramas, including perceptions of wealth, boredom, depression, beauty, safety, and liveliness. The practical utility of this framework is demonstrated through its deployment in Inner London, where it was used to visualize urban perceptions at the Output Area (OA) level and to verify against real-world crime rate.

Original publication

DOI

10.1016/j.isci.2023.106132

Type

Journal article

Journal

iScience

Publication Date

17/03/2023

Volume

26

Keywords

Artificial Intelligence, Environmental sciences