Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Genome-wide association studies (GWAS) and candidate pathway studies have identified low-penetrant genetic variants associated with cutaneous melanoma. We investigated the association of melanoma-risk variants with primary melanoma tumor prognostic characteristics and melanoma-specific survival. The Genes, Environment, and Melanoma Study enrolled 3285 European origin participants with incident invasive primary melanoma. For each of 47 melanoma-risk single nucleotide polymorphisms (SNPs), we used linear and logistic regression modeling to estimate, respectively, the per allele mean changes in log of Breslow thickness and odds ratios for presence of ulceration, mitoses, and tumor-infiltrating lymphocytes (TILs). We also used Cox proportional hazards regression modeling to estimate the per allele hazard ratios for melanoma-specific survival. Passing the false discovery threshold (p = 0.0026) were associations of IRF4 rs12203592 and CCND1 rs1485993 with log of Breslow thickness, and association of TERT rs2242652 with presence of mitoses. IRF4 rs12203592 also had nominal associations (p < 0.05) with presence of mitoses and melanoma-specific survival, as well as a borderline association (p = 0.07) with ulceration. CCND1 rs1485993 also had a borderline association with presence of mitoses (p = 0.06). MX2 rs45430 had nominal associations with log of Breslow thickness, presence of mitoses, and melanoma-specific survival. Our study indicates that further research investigating the associations of these genetic variants with underlying biologic pathways related to tumor progression is warranted.

Original publication

DOI

10.3390/curroncol28060401

Type

Journal article

Journal

Current Oncology

Publisher

MDPI AG

Publication Date

16/11/2021

Volume

28

Pages

4756 - 4771