Visual-Assisted Probe Movement Guidance for Obstetric Ultrasound Scanning Using Landmark Retrieval
Zhao C., Droste R., Drukker L., Papageorghiou AT., Noble JA.
Automated ultrasound (US)-probe movement guidance is desirable to assist inexperienced human operators during obstetric US scanning. In this paper, we present a new visual-assisted probe movement technique using automated landmark retrieval for assistive obstetric US scanning. In a first step, a set of landmarks is constructed uniformly around a virtual 3D fetal model. Then, during obstetric scanning, a deep neural network (DNN) model locates the nearest landmark through descriptor search between the current observation and landmarks. The global position cues are visualised in real-time on a monitor to assist the human operator in probe movement. A Transformer-VLAD network is proposed to learn a global descriptor to represent each US image. This method abandons the need for deep parameter regression to enhance the generalization ability of the network. To avoid prohibitively expensive human annotation, anchor-positive-negative US image-pairs are automatically constructed through a KD-tree search of 3D probe positions. This leads to an end-to-end network trained in a self-supervised way through contrastive learning.