Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

This paper presents a novel multi-modal learning approach for automated skill characterization of obstetric ultrasound operators using heterogeneous spatio-temporal sensory cues, namely, scan video, eye-tracking data, and pupillometric data, acquired in the clinical environment. We address pertinent challenges such as combining heterogeneous, small-scale and variable-length sequential datasets, to learn deep convolutional neural networks in real-world scenarios. We propose spatial encoding for multi-modal analysis using sonography standard plane images, spatial gaze maps, gaze trajectory images, and pupillary response images. We present and compare five multi-modal learning network architectures using late, intermediate, hybrid, and tensor fusion. We build models for the Heart and the Brain scanning tasks, and performance evaluation suggests that multi-modal learning networks outperform uni-modal networks, with the best-performing model achieving accuracies of 82.4% (Brain task) and 76.4% (Heart task) for the operator skill classification problem.

Original publication

DOI

10.1109/ISBI48211.2021.9433863

Type

Conference paper

Publication Date

13/04/2021

Volume

2021-April

Pages

1646 - 1649