Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Ultrasound-based assessment of the fetal nervous system is routinely recommended at the time of the mid-trimester anatomy scan or at different gestations based on clinical indications. This review evaluates the methodological quality of studies aimed at creating charts for fetal brain structures obtained by ultrasound, as poor methodology could explain substantial variability in percentiles reported. Electronic databases (MEDLINE, EMBASE, Cochrane Library, and Web of Science) were searched from January 1970 to January 2021 to select studies on singleton fetuses, where the main aim was to construct charts on one or more clinically relevant structures obtained in the axial plane: parieto-occipital fissure, Sylvian fissure, anterior ventricle, posterior ventricle, transcerebellar diameter, and cisterna magna. Studies were scored against 29 predefined methodological quality criteria to identify the risk of bias. In total, 42 studies met the inclusion criteria, providing data for 45,626 fetuses. Substantial heterogeneity was identified in the methodological quality of included studies, and this may explain the high variability in centiles reported. In 80% of the studies, a high risk of bias was found in more than 50% of the domains scored. In conclusion, charts to be used in clinical practice and research should have an optimal study design in order to minimise the risk of bias and to allow comparison between different studies. We propose to use charts from studies with the highest methodological quality.

Original publication

DOI

10.3390/diagnostics11060916

Type

Journal article

Journal

Diagnostics (Basel)

Publication Date

21/05/2021

Volume

11

Keywords

Sylvian fissure, anterior ventricle, cisterna magna, growth, parieto-occipital fissure, posterior ventricle, transcerebellar diameter, ultrasound