Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Cancer cell resistance to chemotherapeutics (chemoresistance) poses a significant clinical challenge that oncology research seeks to understand and overcome. Multiple anticancer drugs and targeting agents can be incorporated in nanomedicines, in addition to different treatment modalities, forming a single nanoplatform that can be used to address tumor chemoresistance. Nanomedicine-driven molecular assemblies using nucleic acids, small interfering (si)RNAs, miRNAs, and aptamers in combination with stimuli-responsive therapy improve the pharmacokinetic (PK) profile of the drugs and enhance their accumulation in tumors and, thus, therapeutic outcomes. In this review, we highlight nanomedicine-driven molecular targeting and therapy combination used to improve the 3Rs (right place, right time, and right dose) for chemoresistant tumor therapies.

Original publication

DOI

10.1016/j.drudis.2020.12.016

Type

Journal article

Journal

Drug Discov Today

Publication Date

25/12/2020