Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In this paper, we consider differentiating operator skill during fetal ultrasound scanning using probe motion tracking. We present a novel convolutional neural network-based deep learning framework to model ultrasound probe motion in order to classify operator skill levels, that is invariant to operators' personal scanning styles. In this study, probe motion data during routine second-trimester fetal ultrasound scanning was acquired by operators of known experience levels (2 newly-qualified operators and 10 expert operators). The results demonstrate that the proposed model can successfully learn underlying probe motion features that distinguish operator skill levels during routine fetal ultrasound with 95% accuracy.

Original publication




Conference paper

Publication Date





180 - 188


Operator skill, Probe motion, Fetal ultrasound