Variability in the analysis of a single neuroimaging dataset by many teams.
Botvinik-Nezer R., Holzmeister F., Camerer CF., Dreber A., Huber J., Johannesson M., Kirchler M., Iwanir R., Mumford JA., Adcock RA., Avesani P., Baczkowski BM., Bajracharya A., Bakst L., Ball S., Barilari M., Bault N., Beaton D., Beitner J., Benoit RG., Berkers RMWJ., Bhanji JP., Biswal BB., Bobadilla-Suarez S., Bortolini T., Bottenhorn KL., Bowring A., Braem S., Brooks HR., Brudner EG., Calderon CB., Camilleri JA., Castrellon JJ., Cecchetti L., Cieslik EC., Cole ZJ., Collignon O., Cox RW., Cunningham WA., Czoschke S., Dadi K., Davis CP., Luca AD., Delgado MR., Demetriou L., Dennison JB., Di X., Dickie EW., Dobryakova E., Donnat CL., Dukart J., Duncan NW., Durnez J., Eed A., Eickhoff SB., Erhart A., Fontanesi L., Fricke GM., Fu S., Galván A., Gau R., Genon S., Glatard T., Glerean E., Goeman JJ., Golowin SAE., González-García C., Gorgolewski KJ., Grady CL., Green MA., Guassi Moreira JF., Guest O., Hakimi S., Hamilton JP., Hancock R., Handjaras G., Harry BB., Hawco C., Herholz P., Herman G., Heunis S., Hoffstaedter F., Hogeveen J., Holmes S., Hu C-P., Huettel SA., Hughes ME., Iacovella V., Iordan AD., Isager PM., Isik AI., Jahn A., Johnson MR., Johnstone T., Joseph MJE., Juliano AC., Kable JW., Kassinopoulos M., Koba C., Kong X-Z., Koscik TR., Kucukboyaci NE., Kuhl BA., Kupek S., Laird AR., Lamm C., Langner R., Lauharatanahirun N., Lee H., Lee S., Leemans A., Leo A., Lesage E., Li F., Li MYC., Lim PC., Lintz EN., Liphardt SW., Losecaat Vermeer AB., Love BC., Mack ML., Malpica N., Marins T., Maumet C., McDonald K., McGuire JT., Melero H., Méndez Leal AS., Meyer B., Meyer KN., Mihai G., Mitsis GD., Moll J., Nielson DM., Nilsonne G., Notter MP., Olivetti E., Onicas AI., Papale P., Patil KR., Peelle JE., Pérez A., Pischedda D., Poline J-B., Prystauka Y., Ray S., Reuter-Lorenz PA., Reynolds RC., Ricciardi E., Rieck JR., Rodriguez-Thompson AM., Romyn A., Salo T., Samanez-Larkin GR., Sanz-Morales E., Schlichting ML., Schultz DH., Shen Q., Sheridan MA., Silvers JA., Skagerlund K., Smith A., Smith DV., Sokol-Hessner P., Steinkamp SR., Tashjian SM., Thirion B., Thorp JN., Tinghög G., Tisdall L., Tompson SH., Toro-Serey C., Torre Tresols JJ., Tozzi L., Truong V., Turella L., van 't Veer AE., Verguts T., Vettel JM., Vijayarajah S., Vo K., Wall MB., Weeda WD., Weis S., White DJ., Wisniewski D., Xifra-Porxas A., Yearling EA., Yoon S., Yuan R., Yuen KSL., Zhang L., Zhang X., Zosky JE., Nichols TE., Poldrack RA., Schonberg T.
Data analysis workflows in many scientific domains have become increasingly complex and flexible. Here we assess the effect of this flexibility on the results of functional magnetic resonance imaging by asking 70 independent teams to analyse the same dataset, testing the same 9 ex-ante hypotheses1. The flexibility of analytical approaches is exemplified by the fact that no two teams chose identical workflows to analyse the data. This flexibility resulted in sizeable variation in the results of hypothesis tests, even for teams whose statistical maps were highly correlated at intermediate stages of the analysis pipeline. Variation in reported results was related to several aspects of analysis methodology. Notably, a meta-analytical approach that aggregated information across teams yielded a significant consensus in activated regions. Furthermore, prediction markets of researchers in the field revealed an overestimation of the likelihood of significant findings, even by researchers with direct knowledge of the dataset2-5. Our findings show that analytical flexibility can have substantial effects on scientific conclusions, and identify factors that may be related to variability in the analysis of functional magnetic resonance imaging. The results emphasize the importance of validating and sharing complex analysis workflows, and demonstrate the need for performing and reporting multiple analyses of the same data. Potential approaches that could be used to mitigate issues related to analytical variability are discussed.