Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Obstetric ultrasound is a fundamental ingredient of modern prenatal care with many applications including accurate dating of a pregnancy, identifying pregnancy-related complications, and diagnosis of fetal abnormalities. However, despite its many benefits, two factors currently prevent wide-scale uptake of this technology for point-of-care clinical decision-making in low- and middle-income country (LMIC) settings. First, there is a steep learning curve for scan proficiency, and second, there has been a lack of easy-to-use, affordable, and portable ultrasound devices. We introduce a framework toward addressing these barriers, enabled by recent advances in machine learning applied to medical imaging. The framework is designed to be realizable as a point-of-care ultrasound (POCUS) solution with an affordable wireless ultrasound probe, a smartphone or tablet, and automated machine-learning-based image processing. Specifically, we propose a machine-learning-based algorithm pipeline designed to automatically estimate the gestational age of a fetus from a short fetal ultrasound scan. We present proof-of-concept evaluation of accuracy of the key image analysis algorithms for automatic head transcerebellar plane detection, automatic transcerebellar diameter measurement, and estimation of gestational age on conventional ultrasound data simulating the POCUS task and discuss next steps toward translation via a first application on clinical ultrasound video from a low-cost ultrasound probe.

Original publication




Journal article


Journal of medical imaging (Bellingham, Wash.)

Publication Date





014501 - 014501


University of Oxford, Institute of Biomedical Engineering, Department of Engineering Science, Oxford, United Kingdom.