Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

We describe an automatic natural language processing (NLP)-based image captioning method to describe fetal ultrasound video content by modelling the vocabulary commonly used by sonographers and sonologists. The generated captions are similar to the words spoken by a sonographer when describing the scan experience in terms of visual content and performed scanning actions. Using full-length second-trimester fetal ultrasound videos and text derived from accompanying expert voice-over audio recordings, we train deep learning models consisting of convolutional neural networks and recurrent neural networks in merged configurations to generate captions for ultrasound video frames. We evaluate different model architectures using established general metrics (BLEU, ROUGE-L) and application-specific metrics. Results show that the proposed models can learn joint representations of image and text to generate relevant and descriptive captions for anatomies, such as the spine, the abdomen, the heart, and the head, in clinical fetal ultrasound scans.

Original publication

DOI

10.1007/978-3-030-32251-9_37

Type

Conference paper

Publication Date

10/10/2019

Volume

22

Pages

338 - 346

Keywords

Image Captioning, Recurrent Neural Networks, Fetal Ultrasound, Natural Language Processing, Deep Learning, Image Description