Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

This study aimed to assess whether the longitudinal association between childhood muscular fitness and adult measures of glucose homeostasis persist despite changes in muscular fitness across the life course. This prospective longitudinal study included 586 participants who had their muscular power (standing long jump distance), cardiorespiratory fitness (CRF), and waist circumference measured as children (aged 9, 12, 15 years) and again 20 years later as adults. In adulthood, these participants also provided a fasting blood sample which was tested for glucose and insulin. Glucose homeostasis measures including insulin resistance (HOMA2-IR) and beta cell function (HOMA2-β) were estimated. Child and adult muscular power levels were separated into thirds, and tracking groups (persistently low, decreasing, persistently moderate, increasing, and persistently high) were created. Sex-stratified multivariable linear regression models were used to examine the association between muscular power tracking groups and adult measures of glucose homeostasis. Compared with males with persistently high muscular power, males with increasing and persistently low muscular power had higher fasting insulin (increasing: β = 1.12 mU/L, P = .04; persistently low: β = 2.12 mU/L, P = .001) and HOMA2-β (increasing: β = 8.50%, P = .03; persistently low: β = 11.27%, P = .01) independent of CRF and males with persistently low muscular power had greater fasting insulin (β = 1.22 mU/L, P = .02) and HOMA2-IR (β = 0.14, P = .02) independent of waist circumference. Non-significant associations were present for females. For males, maintaining persistently high muscular power between childhood and adulthood could lead to a healthier adult glucose homeostasis profile.

Original publication




Journal article


Scand J Med Sci Sports

Publication Date



cohort, epidemiology, muscle fitness, muscle power