Search results
Found 9354 matches for
Nuffield Department of Women's & Reproductive Health sits within the Medical Sciences Division of the University of Oxford. The department encompasses multi-disciplinary research across four overarching themes; Cancer, Global Health, Maternal & Fetal Health and Reproductive Medicine & Genetics
Correction: Kujawski et al. Autonomic and Cognitive Function Response to Normobaric Hyperoxia Exposure in Healthy Subjects. Preliminary Study. Medicina 2020, 56, 172.
There was an error in the original publication [...].
Assessing cellular energy dysfunction in CFS/ME using a commercially available laboratory test
AbstractThe mitochondrial energy score (MES) protocol, developed by the Myhill group, is marketed as a diagnostic test for chronic fatigue syndrome/Myalgic Encephalomyelitis (CFS/ME). This study assessed the reliability and reproducibility of the test, currently provided by private clinics, to assess its potential to be developed as an NHS accredited laboratory test. We replicated the MES protocol using neutrophils and peripheral blood mononuclear cells (PBMCs) from CFS/ME patients (10) and healthy controls (13). The protocol was then repeated in PBMCs and neutrophils from healthy controls to investigate the effect of delayed sample processing time used by the Myhill group. Experiments using the established protocol showed no differences between CFS/ME patients and healthy controls in any of the components of the MES (p ≥ 0.059). Delaying blood sample processing by 24 hours (well within the 72 hour time frame quoted by the Myhill group) significantly altered many of the parameters used to calculate the MES in both neutrophils and PBMCs. The MES test does not have the reliability and reproducibility required of a diagnostic test and therefore should not currently be offered as a diagnostic test for CFS/ME. The differences observed by the Myhill group may be down to differences in sample processing time between cohorts.
Author Correction: Amine oxidase 3 is a novel pro-inflammatory marker of oxidative stress in peritoneal endometriosis lesions
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Dysregulation of lipid metabolism, energy production, and oxidative stress in myalgic encephalomyelitis/chronic fatigue syndrome, Gulf War Syndrome and fibromyalgia.
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), Gulf War Syndrome (GWS), and Fibromyalgia (FM) are complex, chronic illnesses with overlapping clinical features. Symptoms that are reported across these conditions include post-exertional malaise (PEM), fatigue, and pain, yet the etiology of these illnesses remains largely unknown. Diagnosis is challenging in patients with these conditions as definitive biomarkers are lacking; patients are required to meet clinical criteria and often undergo lengthy testing to exclude other conditions, a process that is often prolonged, costly, and burdensome for patients. The identification of reliable validated biomarkers could facilitate earlier and more accurate diagnosis and drive the development of targeted pharmacological therapies that might address the underlying pathophysiology of these diseases. Major driving forces for biomarker identification are the advancing fields of metabolomics and proteomics that allow for comprehensive characterization of metabolites and proteins in biological specimens. Recent technological developments in these areas enable high-throughput analysis of thousands of metabolites and proteins from a variety of biological samples and model systems, that provides a powerful approach to unraveling the metabolic phenotypes associated with these complex diseases. Emerging evidence suggests that ME/CFS, GWS, and FM are all characterized by disturbances in metabolic pathways, particularly those related to energy production, lipid metabolism, and oxidative stress. Altered levels of key metabolites in these pathways have been reported in studies highlighting potential common biochemical abnormalities. The precise mechanisms driving altered metabolic pathways in ME/CFS, GWS, and FM remain to be elucidated; however, the elevated oxidative stress observed across these illnesses may contribute to symptoms and offer a potential target for therapeutic intervention. Investigating the mechanisms, and their role in the disease process, could provide insights into disease pathogenesis and reveal novel treatment targets. As such, comprehensive metabolomic and proteomic analyses are crucial for advancing the understanding of these conditions in-order to identify both common, and unique, metabolic alterations that could serve as diagnostic markers or therapeutic targets.
Diagnosis of mitochondrial disorders using the PCR.
A large number of mitochondrial disorders have been associated with mutations in mitochondrial DNA (mtDNA) (1-5). Disorders of mtDNA can be divided into three groups: large rearrangements of the mitochondrial genome, point mutations in transfer RNA (tRNA) or coding genes, and a reduction in mtDNA copy number. Only point mutations are currently diagnosed by polymerase chain reaction (PCR) methods. Rearrangements and mtDNA depletion require southern or dot blot analysis. Most pathogenic point mutations described so far can be easily screened using PCR-based methods. Diagnosis of mtDNA disorders is complicated by heteroplasmy, which is unique to this group of diseases. In a normal individual, all of the thousands of copies of mtDNA per cell are identical (homoplasmic). Pathogenic mutations are usually heteroplasmic: a mixture of mutant and wild-type mtDNA molecules coexisting in the same cell or organelle. In many cases the level of mutant in an affected tissue correlates well with disease severity. Ideally, a screening test to detect a pathogenic point mutation should not only identify the presence or absence of a pathogenic mutation, but also quantitate the level of the mutation compared to wild-type mtDNA. Point mutations that result in either a restriction site loss or gain can be identified by amplifying around the mtDNA region of interest and digesting the amplified fragment (e.g., Goto et al. [2]). However, the majority of point mutations do not result in the gain or loss of a restriction site.
Induced pluripotent stem cells as suitable sensors for fibromyalgia and myalgic encephalomyelitis/chronic fatigue syndrome.
BACKGROUND: Fibromyalgia (FM) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are devastating metabolic neuroimmune diseases that are difficult to diagnose because of the presence of numerous symptoms and a lack of specific biomarkers. Despite patient heterogeneity linked to patient subgroups and variation in disease severity, anomalies are found in the blood and plasma of these patients when compared with healthy control groups. The seeming specificity of these "plasma factors", as recently reported by Ron Davis and his group at Stanford University, CA, United States, and observations by our group, have led to the proposal that induced pluripotent stem cells (iPSCs) may be used as metabolic sensors for FM and ME/CFS, a hypothesis that is the basis for this in-depth review. AIM: To identify metabolic signatures in FM and/or ME/CFS supporting the existence of disease-associated plasma factors to be sensed by iPSCs. METHODS: A PRISMA (Preferred Reported Items for Systematic Reviews and Meta-analysis)-based systematic review of the literature was used to select original studies evaluating the metabolite profiles of FM and ME/CFS body fluids. The MeSH terms "metabolomic" or "metabolites" in combination with FM and ME/CFS disease terms were screened against the PubMed database. Only original studies applying omics technologies, published in English, were included. The data obtained were tabulated according to the disease and type of body fluid analyzed. Coincidences across studies were searched and P-values reported by the original studies were gathered to document significant differences found in the disease groups. RESULTS: Eighteen previous studies show that some metabolites are commonly altered in ME/CFS and FM body fluids. In vitro cell-based assays have the potential to be developed as screening platforms, providing evidence for the existence of factors in patient body fluids capable of altering morphology, differentiation state and/or growth patterns. Moreover, they can be further developed using approaches aimed at blocking or reversing the effects of specific plasma/serum factors seen in patients. The documented high sensitivity and effective responses of iPSCs to environmental cues suggests that these pluripotent cells could form robust, reproducible reporter systems of metabolic diseases, including ME/CFS and FM. Furthermore, culturing iPSCs, or their mesenchymal stem cell counterparts, in patient-conditioned medium may provide valuable information to predict individual outcomes to stem-cell therapy in the context of precision medicine studies. CONCLUSION: This opinion review explains our hypothesis that iPSCs could be developed as a screening platform to provide evidence of a metabolic imbalance in FM and ME/CFS.
Autonomic Phenotypes in Chronic Fatigue Syndrome (CFS) Are Associated with Illness Severity: A Cluster Analysis
In this study we set out to define the characteristics of autonomic subgroups of patients with Chronic Fatigue Syndrome (CFS). The study included 131 patients with CFS (Fukuda criteria). Participants completed the following screening symptom assessment tools: Chalder Fatigue Scale, Fatigue Impact Scale, Fatigue Severity Scale, Epworth Sleepiness Scales, the self-reported Composite Autonomic Symptom Scale. Autonomic parameters were measured at rest with a Task Force Monitor (CNS Systems) and arterial stiffness using an Arteriograph (TensioMed Kft.). Principal axis factor analysis yielded four factors: fatigue, subjective and objective autonomic dysfunction and arterial stiffness. Using cluster analyses, these factors were grouped in four autonomic profiles: 34% of patients had sympathetic symptoms with dysautonomia, 5% sympathetic alone, 21% parasympathetic and 40% had issues with sympathovagal balance. Those with a sympathetic-dysautonomia phenotype were associated with more severe disease, reported greater subjective autonomic symptoms with sympathetic over-modulation and had the lowest quality of life. The highest quality of life was observed in the balance subtype where subjects were the youngest, had lower levels of fatigue and the lowest values for arterial stiffness. Future studies will aim to design autonomic profile-specific treatment interventions to determine links between autonomic phenotypes CFS and a specific treatment.
Insights into pancreatic β cell energy metabolism using rodent β cell models
Background:Mitochondrial diabetes is primarily caused by β-cell failure, a cell type whose unique properties are important in pathogenesis.Methods:By reducing glucose, we induced energetic stress in two rodent β-cell models to assess effects on cellular function.Results:Culturing rat insulin-secreting INS-1 cells in low glucose conditions caused a rapid reduction in whole cell respiration, associated with elevated mitochondrial reactive oxygen species production, and an altered glucose-stimulated insulin secretion profile. Prolonged exposure to reduced glucose directly impaired mitochondrial function and reduced autophagy.Conclusions:Insulinoma cell lines have a very different bioenergetic profile to many other cell lines and provide a useful model of mechanisms affecting β-cell mitochondrial function.
Mapping of autosomal dominant progressive external ophthalmoplegia to a 7-cM critical region on 10q24.
OBJECTIVE: To map the gene responsible for autosomal dominant progressive external opthalmoplegia. BACKGROUND: The pathogenesis of progressive external ophthalmoplegia (PEO) can be associated with multiple deletions of mitochondrial DNA (mtDNA). PEO may show autosomal dominant (adPEO) or autosomal recessive (arPEO) patterns of inheritance, indicating that the genetic defect has a Mendelian basis and most likely involves a nuclear gene encoding a protein that interacts with the mitochondrial genome. adPEO is heterogeneous genetically, and thus far disease loci have been identified on chromosomes 3 and 10. The locus on chromosome 10q23-q25 was assigned by linkage analysis in a single Finnish family. METHODS: Samples from a large Pakistani family with adPEO, in which clinical symptoms are bilateral ptosis, limitations of eye movements, and varying degrees of proximal muscle weakness, were collected. Muscle biopsy and mtDNA rearrangement analysis was used to confirm the diagnosis. Genomewide linkage analysis was set up using a set of 391 microsatellite markers. RESULTS: The muscle biopsy from an affected member showed ragged red fibers, increased succinic dehydrogenase staining, lack of cytochrome oxidase activity, and multiple deletions of mtDNA. The disease locus was mapped to 10q23.31-q25.1 by linkage analysis, and a maximum lod score of 5.72 was obtained with D10S1267. CONCLUSION: By analysis of meiotic recombinations in affected individuals, the critical region was restricted to the 7-cM interval between D10S198 and D10S1795.
Fetal and neonatal exposure to AZT and low-protein diet affects glucose homeostasis: a model with implications for AIDS prevention
Zidovudine (AZT) lowers the perinatal transmission of HIV but can impair mitochondrial function by depleting mitochondrial DNA (mtDNA). AZT therapy and perinatal nutritional deprivation affect the body fat distribution, which influences glucose tolerance. We sought to model intrauterine exposure to AZT in humans to determine whether it interacts with low-protein diet (LPD) to impact on birth weight and glucose homeostasis in the offspring. Pregnant dams and their offspring were given AZT, an LPD, or AZT and an LPD (LPD + AZT). AZT reduced mtDNA copy number in liver and birth weight in the offspring and increased their fasting glucose and insulin ( P = 0.021, 0.03, 0.001, and 0.011 respectively) at 6–8 wk of age. LPD decreased litter size and birth weight ( P = 0.01 and 0.012). In the LPD + AZT group, birth weight and litter size were reduced compared with untreated controls, and fasting blood glucose and insulin were raised. There was a significant interaction between LPD and AZT on fasting insulin levels ( P = 0.025). Islet size was not significantly affected, but the mean β-cell area/islet was reduced in the LPD + AZT group compared with controls ( P < 0.05). Early exposure to AZT interacts with LPD to impair fetal development in this model. This combination appeared to impair the supply of insulin and, hence, glucose homeostasis, perhaps as a result of impaired mitochondrial function. Although it is not certain that this can be extrapolated to humans, maternal nutritional deprivation combined with AIDS therapy could influence both birth weight and onset of diabetes.