Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

This paper presents a scalp eletroencephalogram (EEG) rhythmic pattern detection scheme based on neural networks. rhythmic discharges detection is applicable to the majority of seizures seen in newborns, and is listed as detecting 90% of all the seizures. In this approach some features based on various methods are extracted and compared by a modified multilayer neural network in order to find rhythmic discharges. Statistical performance comparison with seizure detection schemes of Gotman et al. and Liu et al. is performed.


Journal article


Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference

Publication Date





6577 - 6580