Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE: For highly operator-dependent ultrasound scanning, skill assessment approaches evaluate operator competence given available data, such as acquired images and tracked probe movement. Operator skill level can be quantified by the completeness, speed, and precision of performing a clinical task, such as biometry. Such clinical tasks are increasingly becoming assisted or even replaced by automated machine learning models. In addition to measurement, operators need to be competent at the upstream task of acquiring images of sufficient quality. To provide computer assistance for this task requires a new definition of skill. METHODS: This paper focuses on the task of selecting ultrasound frames for biometry, for which operator skill is assessed by quantifying how well the tasks are performed with neural network-based frame classifiers. We first develop a frame classification model for each biometry task, using a novel label-efficient training strategy. Once these task models are trained, we propose a second task model-specific network to predict two skill assessment scores, based on the probability of identifying positive frames and accuracy of model classification. RESULTS: We present comprehensive results to demonstrate the efficacy of both the frame-classification and skill-assessment networks, using clinically acquired data from two biometry tasks for a total of 139 subjects, and compare the proposed skill assessment with metrics of operator experience. CONCLUSION: Task model-specific skill assessment is feasible and can be predicted by the proposed neural networks, which provide objective assessment that is a stronger indicator of task model performance, compared to existing skill assessment methods.

Original publication

DOI

10.1007/s11548-022-02642-y

Type

Journal article

Journal

Int J Comput Assist Radiol Surg

Publication Date

12/05/2022

Keywords

Deep learning, Fetal ultrasound, Skill assessment, Ultrasound