Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We have identified a Drosophila gene, Dror, which encodes a putative receptor tyrosine kinase (RTK) and maps to cytological location 31B/C on the second chromosome. In embryos, this gene is expressed specifically in the developing nervous system. The Dror protein appears to be a homolog of two human RTKs, Ror1 and Ror2. Dror and Ror1 proteins share 36% amino acid identity in their extracellular domains and 61% identity in their catalytic tyrosine kinase (TK) domains. Ror1 and Ror2 were originally identified on the basis of the similarity of their TK domains to the TK domains of members of the Trk family of neurotrophin receptors. The Dror protein shows even greater similarity to the Trk proteins within this region than do the human Ror proteins. In light of its similarity to trk and its neural-specific expression pattern, we suggest that Dror may encode a neurotrophic receptor that functions during early stages of neural development in Drosophila.

Original publication

DOI

10.1073/pnas.90.15.7109

Type

Journal article

Journal

Proceedings of the National Academy of Sciences

Publisher

Proceedings of the National Academy of Sciences

Publication Date

08/1993

Volume

90

Pages

7109 - 7113