Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Disorders of calcium homeostasis are the most frequent metabolic bone and mineral disease encountered by endocrinologists. These disorders usually manifest as primary hyperparathyroidism (PHPT) or hypoparathyroidism (HP), which have a monogenic aetiology in 5%–10% of cases, and may occur as an isolated endocrinopathy, or as part of a complex syndrome. The recognition and diagnosis of these disorders is important to facilitate the most appropriate management of the patient, with regard to both the calcium-related phenotype and any associated clinical features, and also to allow the identification of other family members who may be at risk of disease. Genetic testing forms an important tool in the investigation of PHPT and HP patients and is usually reserved for those deemed to be an increased risk of a monogenic disorder. However, identifying those suitable for testing requires a thorough clinical evaluation of the patient, as well as an understanding of the diversity of relevant phenotypes and their genetic basis. This review aims to provide an overview of the genetic basis of monogenic metabolic bone and mineral disorders, primarily focusing on those associated with abnormal calcium homeostasis, and aims to provide a practical guide to the implementation of genetic testing in the clinic.

Original publication

DOI

10.1111/cen.14644

Type

Journal article

Journal

Clinical Endocrinology

Publication Date

01/01/2021