Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© Springer Nature Switzerland AG 2020. For many medical applications, large quantities of imaging data are routinely obtained but it can be difficult and time-consuming to obtain high-quality labels for that data. We propose a novel uncertainty-based method to improve the performance of segmentation networks when limited manual labels are available in a large dataset. We estimate segmentation uncertainty on unlabeled data using test-time augmentation and test-time dropout. We then use uncertainty metrics to select unlabeled samples for further training in a semi-supervised learning framework. Compared to random data selection, our method gives a significant boost in Dice coefficient for semi-supervised volume segmentation on the EADC-ADNI/HARP MRI dataset and the large-scale INTERGROWTH-21st ultrasound dataset. Our results show a greater performance boost on the ultrasound dataset, suggesting that our method is most useful with data of lower or more variable quality.

Original publication

DOI

10.1007/978-3-030-59710-8_67

Type

Conference paper

Publication Date

29/09/2020

Volume

12261 LNCS

Pages

689 - 698